Deriving the Thomas-Fermi-Dirac Equation

For an atom in a given state, assuming \(P(\mathbf{r}) \) is the maximum momentum of an electron in a volume \(V \), there is an octant of spherical momentum space with a radius of \(P \).

\[\langle P \rangle = \frac{3kT}{\pi} \]

It can be shown that the momentum as a function of the electron density is

\[P = \frac{1}{\alpha} \frac{3kT}{\pi} \]

If we define the energy of one electron classically, the Hamiltonian is then

\[E = \frac{P^2}{2m} + V(\mathbf{r}) = \frac{1}{2m} \left(\frac{3kT}{\pi} \right)^2 + V(\mathbf{r}) \]

Now consider the total energy of the whole electron distribution. With kinetic energy density \(t(\mathbf{r}) \), the kinetic energy \(T \) is defined as

\[T = \int t(\mathbf{r})d\mathbf{r} \]

When evaluated at the maximum momentum \(P \) defined earlier,

\[\frac{3kT}{\pi} \]

The potential energy \(V(\mathbf{r}) \) is due to the interaction of the electron density from the nuclei and the electrostatic interaction of the electron density with itself. So the total energy of the electron system is

\[E_{tot} = T + V(\mathbf{r}) = \int t(\mathbf{r})d\mathbf{r} + \int V(\mathbf{r})d\mathbf{r} \]

To find the density functional that minimizes the total energy, we can use the calculus of variations:

\[\delta (E_{tot} - \lambda N_e) = 0 \]

We can calculate the electric field of an ionic sheet:

\[E = \frac{\rho}{\epsilon_0} \]

The Thomas-Fermi-Dirac equation is not sufficient for determining interlayer forces, because it does not have a minimum. However, upon adding the Kirzhnits correction, the functional does have a minimum a distance away from the slab. In our case the correction is

\[U_k = \frac{\alpha}{\beta} \int \frac{d^2q}{(2\pi)^2} \left[\frac{1}{\beta} + (1 + \frac{2\pi^2}{\beta^2}) \right] \]

The Kirzhnits Correction

The Thomas-Fermi-Dirac equation is not sufficient for determining interlayer forces, because it does not have a minimum. However, upon adding the Kirzhnits correction, the functional does have a minimum a distance away from the slab. In our case the correction is

\[U_k = \frac{\alpha}{\beta} \int \frac{d^2q}{(2\pi)^2} \left[\frac{1}{\beta} + (1 + \frac{2\pi^2}{\beta^2}) \right] \]

Many-body problem

DFT electron density

ion

Mathematically Modeling Graphite

To determine the width of an ionic slab, normalize a boundary around a single carbon atom so that it encloses 5 of its electrons, excluding the outermost 2p electrons. The electron density around a carbon atom can be thought of as a superposition of wave functions. These were determined from empirical data and are spherically symmetric

\[\rho(\mathbf{r}) = \frac{n(\mathbf{r})}{4\pi \alpha^2} \]

where

\[\alpha^2 = \frac{e^2}{\epsilon_0 E_{Fermi}} \]

With coefficients and effective nuclear charge \(A_1 \) (all in atomic units):

\[A_1 = 27.76 \quad C = 3268 \quad \frac{A_1}{A_2} = 1.505 \]

Evaluating this integral and solving for \(z \) yields \(z = 1.1826 \) a.u., the width of a slab is \(2z \).

Determining the Electric Field of an Ionic Sheet is straightforward. Experimentally, we know that the distance between nuclei is \(d = 1.42 \) Å.

The area of a hexagon, \(A = \frac{3\sqrt{3}}{2} a^2 \).

Area/Atom \(\frac{A}{atom} = 4 \times \frac{3\sqrt{3}}{2} a^2 \alpha^2 = 3.18 \times 10^{-10} \) atom/square meter.

Surface Charge Density \(\sigma = 3.18 \times 10^{-10} \alpha^2 = 0.1076 \) a.u.

Then, exploiting symmetry and using Gauss’s law, we can calculate the electric field at the surface of the sheet:

\[E = \frac{2m_e}{\epsilon_0} \]

Calculating Interlayer Force

Upon obtaining the solution to the Thomas-Fermi-Dirac equation and plugging it into the total energy functional, the energy is now a functional of the distance between layers. Integrating the total energy functional along with both corrections for different values of \(R \) allows the calculation of the equilibrium distance, and the force constant by adjusting a suitable second order polynomial near the minimum.

Acknowledgements

The author would like to thank the following for their continued support and guidance throughout the semester:

- Faculty of the Physics Department
- Dr. Hart for his help with understanding the mathematics of Density Functional Theory
- Junior and Senior Physics Majors
- Friends and Family